15 research outputs found

    SdiA, an N-Acylhomoserine Lactone Receptor, Becomes Active during the Transit of Salmonella enterica through the Gastrointestinal Tract of Turtles

    Get PDF
    encode a LuxR-type AHL receptor, SdiA, they cannot synthesize AHLs. In vitro, it is known that SdiA can detect AHLs produced by other bacterial species..We conclude that the normal gastrointestinal microbiota of most animal species do not produce AHLs of the correct type, in an appropriate location, or in sufficient quantities to activate SdiA. However, the results obtained with turtles represent the first demonstration of SdiA activity in animals

    What traits are carried on mobile genetic elements, and why?

    Get PDF
    Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes

    Intraspecies Variation in the Emergence of Hyperinfectious Bacterial Strains in Nature

    Get PDF
    Salmonella is a principal health concern because of its endemic prevalence in food and water supplies, the rise in incidence of multi-drug resistant strains, and the emergence of new strains associated with increased disease severity. Insights into pathogen emergence have come from animal-passage studies wherein virulence is often increased during infection. However, these studies did not address the prospect that a select subset of strains undergo a pronounced increase in virulence during the infective process- a prospect that has significant implications for human and animal health. Our findings indicate that the capacity to become hypervirulent (100-fold decreased LD50) was much more evident in certain S. enterica strains than others. Hyperinfectious salmonellae were among the most virulent of this species; restricted to certain serotypes; and more capable of killing vaccinated animals. Such strains exhibited rapid (and rapidly reversible) switching to a less-virulent state accompanied by more competitive growth ex vivo that may contribute to maintenance in nature. The hypervirulent phenotype was associated with increased microbial pathogenicity (colonization; cytotoxin production; cytocidal activity), coupled with an altered innate immune cytokine response within infected cells (IFN-β; IL-1β; IL-6; IL-10). Gene expression analysis revealed that hyperinfectious strains display altered transcription of genes within the PhoP/PhoQ, PhoR/PhoB and ArgR regulons, conferring changes in the expression of classical virulence functions (e.g., SPI-1; SPI-2 effectors) and those involved in cellular physiology/metabolism (nutrient/acid stress). As hyperinfectious strains pose a potential risk to human and animal health, efforts toward mitigation of these potential food-borne contaminants may avert negative public health impacts and industry-associated losses
    corecore